If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2=167
We move all terms to the left:
14x^2-(167)=0
a = 14; b = 0; c = -167;
Δ = b2-4ac
Δ = 02-4·14·(-167)
Δ = 9352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9352}=\sqrt{4*2338}=\sqrt{4}*\sqrt{2338}=2\sqrt{2338}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2338}}{2*14}=\frac{0-2\sqrt{2338}}{28} =-\frac{2\sqrt{2338}}{28} =-\frac{\sqrt{2338}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2338}}{2*14}=\frac{0+2\sqrt{2338}}{28} =\frac{2\sqrt{2338}}{28} =\frac{\sqrt{2338}}{14} $
| y=2.50+500 | | 2.18=1.14(g-8)-1.24 | | 4x+4-2x=36 | | 3+3x+64+77=180 | | 5(x)=94 | | 4d+2=16 | | 8(3a+6)=9(2a-4)- | | 5(-4x+5)=-135 | | 143=̶79b | | 6(k+18)=19 | | 2x-93.5=180 | | 14n+27n=65 | | 13(y−10)=−4 | | Y=(7+2x)/4 | | 5/10=x/50 | | 7x+x+5=12x-10 | | 0.5(2b-18)=3 | | (4x+1)=(5x-2) | | 5/7.x=15 | | -15+3d=-42 | | -5x+65=35 | | 5x+38=130 | | 5x/5=35/5 | | w/3−3=1 | | f(5)=7*5^3+2*5^2-3*5+10 | | 49=8y-31 | | 3(4c+5)=27 | | 16=y/2+13 | | 4+x=36–7x | | 16=y2+13 | | (6n-1)8=-232 | | 9(x+5)+15=150 |